## COMPLEXATION SELECTIVITY BY CHIRAL ASYMMETRIC CROWNS INCORPORATING THE 4,6-O-BENZYLIDENE DERIVATIVES OF METHYL β-D-GLUCOPYRANOSIDE AND METHYL β-D-GALACTOPYRANOSIDE. Á SECONDARY ANOMERIC EFFECT?

Roger B. Pettman and J. Fraser Stoddart<sup>1</sup>

Department of Chemistry, The University, Sheffield S3 7HF

Chiral asymmetric crowns have been derived from the 4,6-0-benzylidene derivatives of methyl  $\alpha$ - $\underline{D}$ -gluco-, 2a-c  $\alpha$ - $\underline{D}$ -galacto-, 2a-c and  $\alpha$ - $\underline{D}$ -manno-2c, d pyranosides. The temperature dependent <sup>1</sup>H n.m.r. spectra of the 1:1 complexes formed between the crowns  $\alpha$ -<u>D</u>-(<u>1</u>) to  $\alpha$ -<u>D</u>D-(<u>4</u>) and RNH<sup>+</sup><sub>3</sub>SCN<sup>-</sup> salts in CD<sub>2</sub>Cl<sub>2</sub> have been interpreted<sup>2b</sup> in terms of equilibria involving anisometric<sup>6</sup>  $\alpha$ - and  $\beta$ -complexes of similar strengths in the case of the  $\alpha$ -<u>D</u>-galacto crowns  $\alpha$ -<u>D</u>-(1) and  $\alpha$ -<u>DD</u>-(2) where both 0-1 ( $\alpha$ -complex) and 0-4 ( $\beta$ -complex) on the pyranosidic ring participate<sup>2b</sup> along with the six crown oxygens in complex formation. With the  $\alpha$ -<u>p</u>-gluco crowns  $\alpha$ -<u>p</u>-(3) and  $\alpha$ -<u>DD</u>-(<u>4</u>), where only 0-1 ( $\alpha$ -complex) can participate along with the six crown oxygens in complex formation, anisometric<sup>3</sup>  $\alpha$ - and  $\beta$ -complexes of dissimilar strengths form with RNH<sup>+</sup><sub>3</sub> ions which contain a phenyl group with the appropriate constitutional disposition within R relative to the  $NH_3^+$  ionic centre. The high selectivity in the complexation of  $PhCH_2NH_3^+$  and  $PhCHMeNH_3^+$  ions by the heterotopic faces of  $\alpha$ -<u>D</u>-3 and  $\alpha$ -<u>DD-4</u> has been ascribed<sup>2b</sup> to a dipole-induced dipole interaction<sup>4</sup> between the 2-phenyl-1,3-dioxan ring in these crowns and the phenyl groups in the  $RNH_3^+$ ions. As a result of this secondary interaction and the involvement of the axial 0-1 in primary binding of the  $NH_3^+$  ionic centre, it was of interest to explore the effect of inverting configuration at C-1 in  $\alpha - \underline{p} - 1$  to  $\alpha - \underline{p} \underline{p} - 4$  on the selectivity of complexation of RNH<sup>+</sup><sub>3</sub> ions. Consequently, the anomers  $\beta - \underline{D} - 1$  to  $\beta - \underline{D} \underline{D} - \underline{4}$  have been prepared and their 1:1 complexes in  $CD_2Cl_2$  with selected RNH $_3^+SCN^-$  and RNH $_3^+ClO_4^-$  salts have now been studied by dynamic <sup>1</sup>H n.m.r. spectroscopy.

Treatment of methyl 4,6- $\sigma$ -benzylidene- $\beta$ - $\underline{D}$ -galactopyranoside<sup>5</sup>  $\beta$ - $\underline{D}$ -( $\underline{5}$ ) with NaH and 1.1 molar equivs. of Ts(0CH<sub>2</sub>CH<sub>2</sub>)<sub>5</sub>OTs<sup>6</sup> in DMSO gave the  $\beta$ - $\underline{D}$ -galacto-18-crown-6 derivative  $\beta$ - $\underline{D}$ -( $\underline{1}$ ), m.p. 141-143°, [ $\alpha$ ]  $\underline{P}$  + 30.2° (c 0.5, CHCl<sub>3</sub>)<sup>7</sup> in 20% yield after chromatography on alumina (ether-methanol). By following a similar procedure, the  $\beta$ - $\underline{D}$ -gluco-18-crown-6 derivative  $\beta$ - $\underline{D}$ -( $\underline{3}$ ), m.p. 78-80°, [ $\alpha$ ]  $\underline{D}$ -47.0° (c 0.5, CHCl<sub>3</sub>)<sup>8</sup> was obtained from methyl 4,6- $\sigma$ -benzylidene- $\beta$ - $\underline{D}$ -glucopyranoside<sup>9</sup>  $\beta$ - $\underline{D}$ -( $\underline{8}$ ) in 46% yield after chromatography on alumina (ether). As in the



No. 5



The association constants ( $K_a$ ) for complexing of  $\beta$ -<u>D</u>-<u>1</u>,  $\beta$ -<u>D</u>-<u>2</u>,  $\beta$ -<u>D</u>-<u>3</u>, and  $\beta$ -<u>D</u>-<u>4</u> with Me<sub>3</sub>CNH<sub>3</sub>+SCN<sup>-</sup> in CDCl<sub>3</sub> were estimated <sup>17</sup> to be 5800, 4200, 1300, and 1000 M<sup>-1</sup>, respectively.<sup>18</sup> In  $CD_2Cl_2$ ,  $\beta-\underline{D}-\underline{1}$  to  $\beta-\underline{D}\underline{D}-\underline{4}$  form 1:1 complexes with selected SCN and  $ClO_4$  salts derived from  $Me_3CNH_2$  (12), PhCH<sub>2</sub>NH<sub>2</sub> (13), and (R) - and (S) - PhCHMeNH<sub>2</sub> (R) - and (S) - (14). Complex formation is accompanied by substantial changes in the <sup>1</sup>H n.m.r. spectra of all these crowns. The spectral behaviour of the  $\beta$ -<u>D</u>-1-13.HSCN complex serves to illustrate the general situation which pertains for the  $\beta$ -galacto crowns. At +30°, the signals for the benzylidene CH ( $\delta$  5.62), H-1 ( $\delta$  4.39), and H-4 ( $\delta$  4.52) are shifted markedly downfield compared with their respective chemical shifts<sup>7</sup> in the spectrum of  $\beta$ -D-1. This observation indicates that 0-4 participates along with the six crown oxygens in complex formation. On cooling down to  $-90^{\circ}$ , the signals for the benzylidene CH and H-4 each separate into high ( $\delta$  5.63 and 4.56, respectively) and low ( $_{\delta}$  5.76 and 4.75, respectively) intensity signals. The fact that the lower intensity signals in each case correspond to the lower field signals suggests that the minor complex is associated with the  $\beta$ -face of  $\beta$ -D-1. Thus, the major complex appears, rather unexpectedly, to involve binding to the  $\alpha$ -face of  $\beta$ -D-1. The Table shows the generality of this conclusion for complexes of  $\beta$ -D-1 with 13.HX, (R)-14.HX, and (S)-14.HX and also lists the relative populations of the two complexes and the free energies of activation  $(\Delta G_d^{\dagger})$  for dissociation of the major complexes in both the galacto and gluco series. The spectra of the 1:1 complexes involving



Table. Temperature dependent <sup>1</sup>H n.m.r. spectral data and thermodynamic parameters for the 1:1 complexation of selected  $\text{RNH}_3^+ x^-$  salts <u>12.HSCN</u>, <u>13.HSCN</u>, <u>13.HClO<sub>4</sub></u>, (*R*)-<u>14.HSCN</u>, (*S*)-<u>14.HSCN</u>, and (*S*)-<u>14.HClO<sub>4</sub></u> by the chiral asymmetric crowns  $\beta$ -<u>D</u>-<u>1</u>,  $\beta$ -<u>DD</u>-<u>2</u>,  $\beta$ -<u>D</u>-<u>3</u>, and  $\beta$ -DD-4<sup> $\alpha$ </sup>

| Crown                                                   | rnh <sub>3</sub> tx⁻                                                                                                                                                  | R                                                                                                 | Downfield<br>shift(p.p.m.)<br>of benzylidene<br>CH at +30 <sup>0</sup> | δ<br>Benzy<br>CH at<br>Maj                        | lidene<br>-90 <sup>0</sup><br>Min                 | Complex ratio<br>( <i>T/</i> °C)<br>Maj : Min                                                                                                     | ∆G <sup>‡D</sup><br>(Maj → Min)<br>±0.3 kcal mol <sup>-1</sup> |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| β- <u><u><u></u><u></u><u></u><u>β</u>-<u>1</u></u></u> | 12.HSCN<br>13.HSCN<br>13.HC10.4<br>(R)-14.HSCN<br>(S)-14.HSCN<br>(S)-14.HSCN<br>(S)-14.HC10.4                                                                         | CMe <sub>3</sub><br>CH <sub>2</sub> Ph<br>CH <sub>2</sub> Ph<br>CHMePh<br>CHMePh<br>CHMePh        | 0.12<br>0.11<br>0.08<br>0.10<br>0.11<br>0.08                           | -<br>5.63<br>5.58<br>5.59<br>5.65<br>5.57         | -<br>5.76<br>5.70<br>5.72<br>5.75<br>5.70         | 76 : 24(-100)<br>78 : 22(-90)<br>78 : 22(-70)<br>70 : 30(-90)<br>87 : 13(-80)<br>73 : 27(-90)                                                     | 10.0<br>12.0<br>10.8<br>10.5<br>11.7<br>10.6                   |
| β- <u>₽</u> 2- <u>2</u>                                 | <u>12.HSCN</u><br><u>13</u> .HSCN<br>( <i>S</i> )- <u>14</u> .HSCN                                                                                                    | CMe <sub>3</sub><br>CH <sub>2</sub> Ph<br>CHMePh                                                  | 0.11<br>0.12<br>0.12                                                   | -<br>-                                            |                                                   | -                                                                                                                                                 | -                                                              |
| β- <u>D</u> - <u>3</u><br>β- <u>DD</u> - <u>4</u>       | $\begin{array}{c} 12.HSCN\\ \hline 13.HSCN\\ \hline 13.HC10_4\\ (R)-14.HSCN\\ (S)-14.HSCN\\ (S)-14.HSCN\\ (S)-14.HC10_4\\ \hline 13.HSCN\\ (S)-14.HSCN\\ \end{array}$ | CMe 3<br>CH <sub>2</sub> Ph<br>CH <sub>2</sub> Ph<br>CHMePh<br>CHMePh<br>CHMePh<br>CH2Ph<br>CH2Ph | 0.05<br>0.03<br>0.02<br>0.05<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03   | -<br>5.54<br>5.58<br>5.59<br>5.57<br>5.62<br>5.60 | -<br>5.69<br>5.68<br>5.69<br>5.65<br>5.74<br>5.69 | $\begin{array}{r} - \\ 78 : 22(-90) \\ 68 : 32(-90) \\ 76 : 24(-100) \\ 68 : 32(-80) \\ 76 : 24(-90) \\ 86 : 14(-90) \\ 72 : 28(-90) \end{array}$ | -<br>10.2<br>10.6<br>10.3<br>9.7<br>10.2<br>10.8<br>10.6       |

<sup>a</sup>All spectra were recorded in  $CD_2Cl_2$  at 220 MHz on a Perkin Elmer R34 spectrometer with Me<sub>4</sub>Si as "lock" and internal standard.

 $b_{1}^{\dagger}$  The free energies of activation  $(\Delta G^{\dagger})$  for dissociation of the 1:1 complexes correspond to the average values calculated from the Eyring equation using rate constants determined by line shape analysis of the benzylidene CH signal at two different temperatures in each case.

 $\beta$ -<u>DD-2</u> did not provide suitable temperature dependent behaviour in their potential <sup>1</sup>H n.m.r. probes and so did not afford thermodynamic data. The spectral behaviour of the  $\beta$ -D-3-13.HClO<sub>1</sub> complex serves to illustrate the general situation which pertains for the  $\beta$ -<u>D</u>-gluco crowns. Although the influence upon the chemical shift of the benzylidene CH on complex formation is much less marked than in the galacto series, this <sup>1</sup>H n.m.r. probe shows temperature dependence presumably as a result of the dipole-induced dipole interaction present in the  $\beta$ - $\underline{D}$ -3- $\beta$ -13.HClO<sub>1</sub> complex which no doubt brings the benzylidene CH under the anisotropic influence of the phenyl ring. At -90°, a triplet (J = 10 Hz) with a peak area corresponding to ca. 0.8 of a proton emerged at high field ( $\delta$  2.62) and could be assigned to H-3 in the major complex on the basis of double irradiation studies. Since this shielding of H-3 is characteristic of nearly all the low temperature spectra of 1:1 complexes involving  $\beta$ -D-1 to  $\beta$ -DD-4 and phenyl-containing RNH<sup>+</sup> ions, we are led to propose the existence of a stabilising secondary anomeric effect in the  $\alpha$ -complexes (e.g.  $\beta$ -<u>D</u>-<u>3</u>- $\alpha$ -<u>13</u>.HClO<sub>L</sub>) which involves the dipole associated with the anomeric region of  $\beta$ -glycosides<sup>19</sup> and an induced dipole in the phenyl ring of appropriate RNH<sup>+</sup><sub>3</sub> ions. is intriguing to reflect on the possibility that the anomeric effect which destabilises<sup>20</sup> lt  $\beta$ -glycosides intramolecularly may be a source of stability "intermolecularly" within a complex of a  $\beta$ -glycoside!

## References and Footnotes

- 1. Address all correspondence to this author at the Corporate Laboratory, Imperial Chemical Industries Ltd., P.O. Box No. 11, The Heath, Runcorn, Cheshire WA7 4QE.
- (a) D.A. Laidler and J.F. Stoddart, Carbohydr. Res., <u>55</u>, C1 (1977); (b) J.C.S. Chem. Comm., 481 (1977); (c) W. Hain, R. Lehnert, H. Röttele, and G. Schröder, Tetrahedron Lett., 625 (1978); (d) R.B. Pettman and J.F. Stoddart, *ibid.*, following communication.
- The term anisometric (K. Mislow, Bull. Soc. Chim. Belg., <u>86</u>, 595 (1977)) implies that the complexes are constitutionally isomeric as well as diastereoisomeric.
- (a) J.E. Anderson, Tetrahedron Lett., 4713 (1965); (b) K.D. Carlson, C.R. Smith, and I.A. Wolff, Carbohydr. Res., <u>13</u>, 403 (1970).
- 5. B. Capon, W.G. Overend, and M. Sobell, *Tetrahedron*, <u>16</u>, 106 (1961).
- 6. D.A. Laidler and J.F. Stoddart, Tetrahedron Lett., preceding communication.
- 7. <sup>I</sup>H N.m.r. data (CD<sub>2</sub>Cl<sub>2</sub>) for β-<u>D</u>-1 : δ 7.55-7.30 (m, 5H, aromatic protons), 5.52 (s, 1H, benzylidene CH), and 4.32-3.32 (m, 27H, other CH and CH<sub>2</sub> protons; s at 3.54, 3H, 0CH<sub>3</sub>).
- 8. <sup>1</sup>H N.m.r. data (CD<sub>2</sub>Cl<sub>2</sub>) for  $\beta$ -D-3 :  $\delta$  7.50-7.30 (m, 5H, aromatic protons), 5.52 (s, 1H, benzylidene CH), 4.37-4.26 (d, J = 8 Hz, 1H, H-1; q, J = 5,10 Hz, 1H, H-6e), 3.95-3.45 (m, 25H, H-3, H-4, H-6e, and CH<sub>2</sub> protons; s at 3.50, 3H, 0CH<sub>3</sub>), 3.45-3.25 (m, 1H, H-5), and 3.15 (t, J = 8 Hz, 1H, H-2). The above assignments were made as a result of homonuclear INDOR spectroscopy as well as by conventional double irradiation experiments.
- 9. D.S. Mathers and G.J. Robertson, J. Chem. Soc., 696 (1933).
- 10. W.D. Curtis, D.A. Laidler, J.F. Stoddart, and G.H. Jones, J.C.S. Perkin 1, 1756 (1977).
- 11. The diol  $\beta$ - $\underline{D}$ -(5), when treated with an excess of CH<sub>2</sub>=CHCH<sub>2</sub>Br and KOH in toluene, gave the diallyl ether  $\beta$ - $\underline{D}$ -(6), m.p. 131-132°,  $[\alpha]_{D}$  + 32.7° (*c* 0.5,CHCl<sub>3</sub>) in 73% yield. Ozonolysis of  $\beta$ - $\underline{D}$ -6 in methanol, followed by borohydride reduction, afforded (74%)  $\beta$ - $\underline{D}$ -7, m.p. 150-151°,  $[\alpha]_{D}$  + 32.4° (*c* 0.5, CHCl<sub>3</sub>).
- 12. The diol  $\beta \underline{\underline{D}} \underline{\underline{\beta}}$ , when treated with an excess of  $CH_2 = CHCH_2Br$  and KOH in THF, gave the diallyl ether  $\overline{B} \underline{\underline{D}} (\underline{9})$ , m.p. 204-206°,  $[\alpha]_D 62.2^\circ$  (*c* 0.5, CHCl<sub>3</sub>) in 70% yield. Ozonolysis of  $\beta \underline{\underline{D}} 9$  in methanol, followed by borohydride reduction, afforded (80%)  $\beta \underline{\underline{D}} 10$ , m.p. 112-114°,  $[\alpha]_D 64.3^\circ$  (*c* 0.5, CHCl<sub>3</sub>).
- 13. Condensation (NaH/DMSO) of equimolar proportions of  $\beta \underline{D} \underline{7}$  and  $\underline{D} \underline{11}$  gave  $\beta \underline{D} \underline{D} \underline{12}$  in 15% yield after medium pressure liquid chromatography on silica (ether-light petroleum, b.p. 60-80°).
- 14. <sup>1</sup>H N.m.r. data (CD<sub>2</sub>Cl<sub>2</sub>) for β-<u>DD</u>-2 : δ 7.52-7.35 (m, 5H, aromatic protons), 5.51 (s, 1H benzylidene CH), 4.30-3.37 (m, 31H, other CH and CH<sub>2</sub> protons; s at 3.53, 3H, OCH<sub>3</sub>), and 1.37, 1.36, 1.32, and 1.30 (4 x s, 12H, 4 x CH<sub>3</sub>).
- 15. Condensation (NaH/DMSO) of equimolar proportions of  $\beta \underline{D} \underline{10}$  and  $\underline{D} \underline{11}$  gave  $\beta \underline{D} \underline{D} \underline{4}$  in 43% after chromatography on alumina (ether) and vacuum distillation (b.p. 240° at 0.05 mm Hg).
- 16. <sup>1</sup>H N.m.r. data (CD<sub>2</sub>Cl<sub>2</sub>) for β-<u>DD-4</u>: δ 7.50-7.30 (m, 5H, aromatic protons), 5.53 (s, 1H, benzylidene CH), 4.37-3.05 (m, 31H, other CH and CH<sub>2</sub> protons; s at 3.50, 3H, 0CH<sub>3</sub>), and 3.37 and 3.31 (2xs, 12H, 4xCH<sub>3</sub>).
- J.M. Timko, S.S. Moore, D.M. Walba, P.C. Hibberty, and D.J. Cram, J. Am. Chem. Soc., <u>99</u>, 4207 (1977).
- 18. We have commented elsewhere (A.C. Coxon, D.A. Laidler, R.B. Pettman, and J.F. Stoddart, J. Am. Chem. Soc., submitted) on the magnitude of these K values in relation to the stereochemistry of the complexes.
- 19. J.F. Stoddart, Stereochemistry of Carbohydrates, Wiley, New York, 1971, p. 58-87.
- 20. The acetal group associated with the anomeric centre in the  $\beta$ -D-3- $\alpha$ -13.HClO<sub>4</sub> complex is sterically more accessible to the phenyl ring of the PhCH<sub>2</sub>NH<sub>3</sub><sup>+</sup> ion than is the acetal group of the 1,3-dioxan ring in the  $\beta$ -D-3- $\beta$ -13.HClO<sub>4</sub> complex.

(Received in UK 13 November 1978)